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Time Series Model Estimation

Outline:

Review stationarity and no. of lags.

Discuss model estimation.

Demonstrate how to estimate Time Series (AR)
models with Simetar .

Interpretation of model results.

How to forecast the results for an AR model.
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Time Series Model Estimation - Stationarity

Plot the data to see the characteristics of the series
you are analyzing.

Use the Dickey-Fuller test to determine the minimum
number of differences (possible zero) needed to
render the data stationary (DF function in Simetar)

Specify the number of lags in the AR model
Sample autocorrelations (AUTOCORR in Simetar)
Partial autocorrelations (PAUTOCORR)
Schwarz Information Criterion (ARLAG)
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Time Series Model Estimation

Once you have determined the number of differences in the AR
model. . .

Use OLS for estimation

For a series requiring one difference and three lags, estimate

D1,t = β0 + β1D1,t−1 + β2D1,t−2 + β3D1,t−3

Use this equation to forecast the D1,t+i which implies forecasts
for Yt+i .
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Time Series Model Estimation in Simetar
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Time Series Model Estimation

Top line contains the fitted OLS coefficients.

S.E. of Coef. can be used to calculate t ratios to infer which
lags are significant.

Can explore restricting out lags (variables).

The SIC updates as restrictions are imposed, and can therefore
be used to infer the appropriateness of restrictions
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Forecasting a Time Series Model

If the original series is stationary and has T observations of data
we estimate the model as an AR(0 differences, 1 lag)

Forecast the first period ahead as:

ŶT+1 = α + βYT

Forecast the second period ahead as:

ŶT+2 = α + βŶT+1

Repeat for additional periods.

This ONLY works if Y is stationary and the AR model reflects
zero differences.
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Forecasting a D1 Times Series Model

What if Y was non-stationary, and D1,t was stationary? Also,
assume a single lag is appropriate for the AR model. How do
you forecast?

Let T represent the last historical observation.

Steps for the one-period-ahead forecast:
Recall that D1,T = YT–YT−1.

So the AR model projection is:

D̂1,T+1 = α + βD1,T

Next add the forecasted D̂1,T+1 to YT to forecast ŶT+1 as
follows:

ŶT+1 = YT + D̂1,T+1

.
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Forecasting a D1 Time Series Model

Two-period-ahead forecast is:

D̂1,T+2 = α + βD̂1,T+1

ŶT+2 = ŶT+1 + D̂1,T+2

Repeat the process for period 3 and so on.

This is recursive dynamic forecasting
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For Forecast Model D1,t = 4.019 + 0.42859 D1,T−1
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Time Series Model Forecast-Note that this Model

Restricted Out the Second Lag
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Time Series Model Estimation

The Impulse Response Function shows the impact of a unit
shock (in Simetar) in Y (or D1) on the projected values of over
time.
The rate at which the shock dies out depends on the amount of
persistence in the series (whcih should be reflected in a properly
specified model)
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Simulation of a Time Series Model

Stochastic recursive dynamic forecasts for an AR model.
Recall that the estimation was via OLS, and there exists an error
component.

To make the recursive dynamic projections stochastic, add a
stochastic error (or innovation) to the projection:

D1,T+1 = α + βD1,T + εT+1

where (for now), assume ε is normally distributed with a mean of
zero and a standard deviation estimated from the OLS residuals
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Vector Autoregressive (VAR) Models

VAR models are time series models where two or more variables
are thought to be correlated and together they explain more
than each variable by itself.

For example forecasting

Sales and Advertising
Money supply and interest rate
Supply and Price
Corn price and soybean price
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VAR Time Series Model Estimation

An example of advertising and sales

DAT+i = α + β1DA1,T−1 + β2DA1,T−2 + γ1DS1,T−1 + γ2DS1,T−2

DST+i = α + β1DS1,T−1 + β2DS1,T−2 + γ1DA1,T−1 + γ2DA1,T−2

where

A is advertising and S is sales

DA is the difference for A and

DS is the difference for S

In this model we fit A and S at the same time and A is affected by
its lag differences and the lagged differences for S . The same is true
for S affected by its own lags and those of A.
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VAR Model Estimation

Advertising and sales VAR model.

Highlight two columns B and C

Specify number of lags (applies to both series)

Specify number differences (applies to both series)
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VAR Model Estimation

Advertising and sales VAR model
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