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Multiple Regression Analysis

We would like to know following about regression analysis:

@ How to use a regression to forecast a variable
@ How to interpret the beta coefficients

@ What the t ratio means

@ What the p value is and what it means

@ What the residuals are

@ What the standard deviation is

@ What is the F ratio and R? and what they are used for

Henry Bryant (Texas A&M University) Agribusiness Analysis and Forecasting



Structural Variation

@ Variables you want to forecast are often dependent on other
variables.

o Qt. Demand = f(Own Price, Substitute Price, Income,
Population, Season, Tastes & Preferences, Trend, etc.).
o CropYield = a+ b(Time, etc)

@ Structural models will explain most structural variation in a data
series.

@ Even when we build structural models, the forecast is not
perfect.

@ A residual remains as the unexplained portion.
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Multiple Regression Forecasts

@ Variables to include in a structural model are suggested by:

e Economic theory
o Knowledge of industry
o Known relationships to other variables

@ Examples of forecasting and uses:

Planted acres — needed by ag. input businesses
Demand for a product - sales and processors

Price of corn for cattle - feedlots, grain mills, etc.
Government payments - Congressional Budget Office
Exports or trade flows - international ag. business
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Multiple Regression Forecasts

@ Structural model
Y =00+ /X +5l+e

where X and Z are exogenous variables that explain the
variation of Y over the historical period.

o Estimate parameters (5o, 1, B2, €) using OLS.
o OLS minimizes the sum of squared residuals.
e That is, we seek to explain as much of the variation in Y as
possible, i.e., maximizing the precision of your probabilistic
forecast.
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Example of a Structural Forecast Model for a Crop

Planted Acres; = f(Price;_1, Planted Acres,_1, IdleAcre;, X;)

HarvAc; = f(PItAc;)
Yield, = f(Trend;)
Production; = Yield, x HarvAc;

Supply; = Prod; + EndStock; 4
DomesticD, = f(Price;, Income/pop:, Z;)
Export, = f(Price;, Y:)
EndingStock,; = f(Price;, Production;)
DomesticD; + Export, + Endingstock; = Supply;
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Steps to build Multiple Regression Models

@ Plot the Y variable in search of: trend, seasonal, cyclical, structural, and
irregular variation.

@ Consider what relationships are suggested by economic theory and
knowledge an industry

@ Plot Y vs. each X to evaluate the strength of hypothesized relationships;
calculate correlation coefficients to Y.

@ A Crop production forecast might be specified as follows:
PltAc, = f(E(Pricet), PltAc;—1, E(Pth Crop;), Trend, Yield;_1)
HarvAc: = By + B1 PItAc:
Yield = Bo + 51T
Prod; = HarvAc; * Yield;
@ Estimate with OLS.
@ Make the deterministic forecast.

@ Add stochastic error(s) for a probabilistic forecast.
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US Planted Wheat Acreage Model

PltAc, = f(E(Price;), Yield,_1, CRP;, Year;)

95% Intercept Years Pricet-1 CRPt Yield t-1
Beta 843.985 0.412 9.237 -0.073 0459
S.E. 350.136 0.183 1.297 0.138 0412
t-test 2410 -2.245 7124 -0.529 1.113
Prob(t) 0.024 0.034 0.000 0.601 0276
Elasticity at Mean -11.508 0.407 -0.008 0.229

o Statistically significant betas for the Trend (" Years”) and Price.
@ Leave CRP in model because its needed for policy analysis.

e Consider dropping Yield;
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Forecasting with Multiple Regression Models

@ Specify (assume) alternative values for X's.
@ Multiply Betas by their respective X's.
@ Forecast Acres for alternative Prices and CRP.

@ Lagged Yield and Year are constant in scenarios.

c | o | E | F | & | H | I | 0 | kK | L M N
| 92 Forecasting with alternative Values for Independent Variables
| 93 Intercept Years Pricet-1 CRPt Yield t-1
94  843.985 -0.412 9.237 0.073 0.459 =M49
| 95 Assumed Values for the Independent Variables Forecast Values
96 ‘Year Pricet-1 CRPt Yield -1 Planted t
o7 2002 2.880 9.600 41.90 64.996 =$CH94+3DF94*CIT+FEFI4*DIT+FF P4 EST+ G4 FOAT
98 | 2002 2.800 9.600 41.90 64.257 =$CH94+3D§94*CI8+$EF4"DIS+FF 94 ESS+HCHI4°F I8
99 | 2002 2.700 9.600 41.90 63.334 =$CH94+505947C99+$EFA4 D99+ FF 94" ES9+$CHA47F A9
1100 2002 2.600 9.600 41.90 62.410 =$C$94+§D§94*C100+$ESI4"D100+§F $94°E 100+ $GH94"F 100
101 2002 2.500 9.600 41.80 61.486 =$CH94+§D§947C101+$EFIA"D101+§FFI4"E101+$GEI4"F101
1102 2002 2.880  10.000 41.90 64.967 =$C$94+§D§94*C102+$EFI4"D102+§F$I4"E102+$GEI4™F 102
1103 | 2002 2.880 10.500 41.90 64.930 =$C$94+50$94*C103+$EFI4*D103+FF 94 E103+$GFO47F103
1104 2002 2.880 11.000 41.90 64.894 =$C$94+5D§I4"C104+FEFM D104+ FFFI4 EN104+$GFA4 F 104
|105] 2002 2.880 11.500 41.90 64.857 =$C$94+3D§I4"C105+FEF4"D105+FFF94 " E105+$GFA47F 105
1106 2002 2.880 12.000 41.90 64.821 =$C$94+3D§94*C106+FEF4* D106+ FFFI4°E106+$GE94 " F 106
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Multiple Regression Forecast with Risk

We

will begin probabilistic forecast using PA,,; and o (Std. Dev) and

assume a normal distribution for residuals.

or

or

PA..i = PA..; + NORM(0, o)
PA.ii = PAyi + o0 x NORM(0, 1)

PA:,; = NORM(PA..;,0)
A | B | ¢ | b | E |
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109

110

111

112
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Intercept Years Pricet-1 CRP t Yield t-1

843.985 -0.41164 9.23694 -0.07315 0.458552
Assumed ) 2003 2.88 9.6 411
Forecasted SE Predicted Probabilistic
Y-Hat for 2003 SEP for 2003 Forecast 2003

64.218 5.141 57.044 =NORM(A113,C113)

Formula to forecast determinisitc component
=A109+B109"B110+C109*C110+D109*D110+E109*E110
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Multiple Regression Forecast with Risk

Present probabilistic forecast as a PDF with 95% Confidence Interval
shown here as the bars about the mean for a
probability density function (PDF).

PDF Approximation PDF Approximation
Forecast 2
Start 49
End 32

Band Widt 2.157497
Kernel Gaussian
Confidenc 95.0%
Lower Que 54 685
Awverage 64 045

4500 5000 5500 6000 6500 7000 7500 8000  sso0  OPPer Que  72.378

— Forecast
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Regression Model for Growth

Some data display a growth pattern.

°
@ Easy to forecast with multiple regression

@ Add T? variable to capture the growth or decay of Y variable.
°

Growth function
Y:a+b1T+b2T2

Growth at decreasing rate

Y =a+ bLlog(T)
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Data & Results for Log Models

Single Log Form
LOg(Yt) = bo —+ blT

Try the Single Log Form 95% Intercept Years

KOV Log Y Years Beta 184.039 -0.091
110.0 4.70048 1970 S.E. 4.393 0.002
93.0 4532599 1971 t-test 41.895 -41.176
80.0 4.382027 1972 Prob(t) 0.000 0.000
81.0 4394449 1973 Elasticity at Mean -57.184
68.0 4.219508 1874 Variance Inflation Factor MA,
55.0 4.007333 1975 Partial Correlation NA,

52.0 3951244 1976 Semipartial Correlation MNA,

Double Log Form
Log(Y:) = by + biLog(T)

Double Log Transformation of the Data 95% Intercept Log X
Actual KO' Years Log Y Log X Beta 1376.746 -180.887
110.0 1970 4.70048 7585788822 S.E. 33.222 4.375
930 1971 4532509 7586296307 t-test 41.441 -41.346
80.0 1972 4382027 7.586803535 Prob(t) 0.000 0.000
81.0 1973 43094449 7587310506 Elasticity at Mean -434.258
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Regression Model For Decay Functions

@ Some data display a decay pattern.

@ There are various possible models for this situation

1

@ One example: use an exogenous variable of the form +

@ Decay function

Y = ot i) + Bal )
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Forecasting Growth or Decay Patterns

Here is the regression result for estimating a decay function.

1
Yt - 50 + 51(?)
or
1 1
Y: = 5o+ 51? +5zﬁ

Observed and Predicted Values for KOV

—Predicted —0bserved
—— Lower 95% Predict. Interval —— Upper 95% Predict. Interval
—— Lower 95% Conf. Interval ——Upper 95% Conf. Interval
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Multiple Regression Forecasts

Example of a structural regression model that contains both a Trend
and an independent X variable

Y =0Bo+ T + BoXe

This equation does not explain all of the variability, a seasonal or
cyclical variability may be present, if so, you need to “remove” its
effect.

ULS Regression Statistics tor Acres t,

F-test 43 620 Prob(F) 0.000 .
MSE"? 5099 CVRegr 7446 Observed and Predicted Values for Acres t
R? 0.708 DurbinWi 06591 o
RBar’ 0.692 Rho 0671
Akaike Ini  3.281 Goldfeldt 4614, 8000
Schwarz | 3.366 60.000
95% Intercept EPrice t-1 Trend 40.000
Beta 805.020 9.758 -0.386
S.E. 162.842 1.045 0.083 | 20.000
ttest 4944 9339 4659 gooo o
Probit) 0.000 0000  0.000
Elasticity at Mean 0424 -11.180 ==Predicted ===Observed
Variance Inflation Factor Lower 95% Predict. Interval Upper 95% Predict. Interval
Partial Correlation
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Regression evaluation

@ Make sure parameter signs are based on sound economic theory
for all variables.

o Student t ratios greater than 1.96 (P values for betas < 0.05).
@ F ratio larger than 20.0 and its P value < 0.05.

@ Add explanatory elements that increase R? by a non-trivial
amount.
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Goodness of Fit Measures

Models with high R? may not forecast well. Every time we add a new X,
we will get some increase in R2.

R2—1_ i _
(Yo ¥)2

R? is preferred as it is not affected by no. of Xs.

= (1 - R?)(n—1)
RE=1- n—k

We might also use MAPE for model selection. MAPE is used to measure
the accuracy of a forecasting measure and usually the accuracy is
expressed in terms of percentage.

Y, — Y,
Y:

100% -
MAPE —
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Information Criteria

For a residual sum of squares RSS, a number of right-hand-side variables k, and a number of
observations n, Akaike Information Criterion and Bayesian Information Criterion are calculated
as follows:

@ Akaike Information Criterion (AIC)

A — (RSS) L2kt

n n

@ Bayesian Information Criterion (BIC), sometimes called Schwartz Information Criterion
(SIC) or Schwarz Bayesian Criterion (SBC)

BIC =In (R—SS) + Eln(n)
n n

@ When fitting models, it is possible to increase the likelihood by adding parameters, but
doing so may result in overfitting. The AIC & BIC resolve this problem by introducing a
penalty term for the number of parameters in the model. The penalty term is larger in
BIC than in AIC.
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Summary of Goodness of Fit Measures

o MAPE works best to determine model for “in sample”
forecasting.

@ R? does not penalize for adding Xs.
@ R? provides some penalty as k increases.

@ AIC is better than R? but BIC results in the most parsimonious
models (fewest Xs).
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Black Swans (BSs)

@ Black Swans are low probability events.
e An outlier, which is “outside realm of reasonable expectations.”
o Carries an extreme impact.
e Human nature causes us to concoct explanations.

@ Black swans are an example of uncertainty

o Uncertainty is generated by unknown probability distributions.
o Risk is generated by “known" distributions.

@ 1917 influenza pandemic would be a black swan.
@ War outbreak

@ Meteor strike

Sudden policy change

@ We will discuss more about incorporating uncertainty in the model
when we start simulating non-parametric distributions.
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