Agribusiness Analysis and Forecasting Multiple Regression Forecasts

Henry Bryant

Texas A&M University

Multiple Regression Analysis

We would like to know following about regression analysis:

- How to use a regression to forecast a variable
- How to interpret the beta coefficients
- What the t ratio means
- What the p value is and what it means
- What the residuals are
- What the standard deviation is
- What is the F ratio and R^2 and what they are used for

Structural Variation

- Variables you want to forecast are often dependent on other variables.
 - Qt. Demand = f(Own Price, Substitute Price, Income, Population, Season, Tastes & Preferences, Trend, etc.).
 - CropYield = a + b(Time, etc)
- Structural models will explain most structural variation in a data series.
- Even when we build structural models, the forecast is not perfect.
- A residual remains as the unexplained portion.

Multiple Regression Forecasts

- Variables to include in a structural model are suggested by:
 - Economic theory
 - Knowledge of industry
 - Known relationships to other variables
- Examples of forecasting and uses:
 - Planted acres needed by ag. input businesses
 - Demand for a product sales and processors
 - Price of corn for cattle feedlots, grain mills, etc.
 - Government payments Congressional Budget Office
 - Exports or trade flows international ag. business

Multiple Regression Forecasts

Structural model

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + e$$

where X and Z are exogenous variables that explain the variation of Y over the historical period.

- Estimate parameters $(\beta_0, \beta_1, \beta_2, e)$ using OLS.
 - OLS minimizes the sum of squared residuals.
 - That is, we seek to explain as much of the variation in \hat{Y} as possible, i.e., maximizing the precision of your probabilistic forecast.

Example of a Structural Forecast Model for a Crop

Planted
$$Acres_t = f(Price_{t-1}, Planted \ Acres_{t-1}, IdleAcre_t, X_t)$$

$$HarvAc_t = f(PltAc_t)$$

$$Yield_t = f(Trend_t)$$

$$Production_t = Yield_t * HarvAc_t$$

$$Supply_t = Prod_t + EndStock_{t-1}$$

$$DomesticD_t = f(Price_t, Income/pop_t, Z_t)$$

$$Export_t = f(Price_t, Y_t)$$

$$EndingStock_t = f(Price_t, Production_t)$$

$$DomesticD_t + Export_t + Ending_Stock_t = Supply_t$$

Steps to build Multiple Regression Models

- Plot the Y variable in search of: trend, seasonal, cyclical, structural, and irregular variation.
- Consider what relationships are suggested by economic theory and knowledge an industry
- Plot Y vs. each X to evaluate the strength of hypothesized relationships; calculate correlation coefficients to Y.
- A Crop production forecast might be specified as follows:

$$PltAc_t = f(E(Price_t), PltAc_{t-1}, E(P^{th}Crop_t), Trend, Yield_{t-1})$$
 $HarvAc_t = \beta_0 + \beta_1 PltAc_t$
 $Yield_t = \beta_0 + \beta_1 T$
 $Prod_t = HarvAc_t * Yield_t$

- Estimate with OLS.
- Make the deterministic forecast.
- Add stochastic error(s) for a probabilistic forecast.

US Planted Wheat Acreage Model

$$PltAc_t = f(E(Price_t), Yield_{t-1}, CRP_t, Year_t)$$

95%	Intercept	Years	Price t-1	CRP t	Yield t-1
Beta	843.985	-0.412	9.237	-0.073	0.459
S.E.	350.136	0.183	1.297	0.138	0.412
t-test	2.410	-2.245	7.124	-0.529	1.113
Prob(t)	0.024	0.034	0.000	0.601	0.276
Elasticity at	Mean	-11.508	0.407	-0.008	0.229

- Statistically significant betas for the Trend ("Years") and Price.
- Leave CRP in model because its needed for policy analysis.
- Consider dropping $Yield_{t-1}$

Forecasting with Multiple Regression Models

- Specify (assume) alternative values for X's.
- Multiply Betas by their respective X's.
- Forecast Acres for alternative Prices and CRP.
- Lagged Yield and Year are constant in scenarios.

	-	-	-	_								
	С	D	E	F	G	Н		J	K	L	M	N
92	Forecasti	ng with alt	ernative V	alues for li	ndepender	nt Variable	s					
93	Intercept	Years	Price t-1	CRP t	Yield t-1							
94	843.985	-0.412	9.237	-0.073	0.459	=M49						
95	Assumed	Values for	the Indep	endent Va	riables	Forecast	Values					
96	Year	Price t-1	CRP t	Yield t-1		Planted t						
97	2002	2.880	9.600	41.90		64.996	=\$C\$94+\$D	\$94*C97+\$	E\$94*D97+	\$F\$94*E97	+\$G\$94*F9	17
98	2002	2.800	9.600	41.90		64.257	=\$C\$94+\$D	\$94*C98+\$	E\$94*D98+	\$F\$94*E98	+\$G\$94*F9	18
99	2002	2.700	9.600	41.90		63.334	=\$C\$94+\$D	\$94*C99+\$	E\$94*D99+	\$F\$94*E99	+\$G\$94*F9	19
100	2002	2.600	9.600	41.90		62.410	=\$C\$94+\$D	\$94*C100+	\$E\$94*D10	0+\$F\$94*E	100+\$G\$94	*F100
101	2002	2.500	9.600	41.90		61.486	=\$C\$94+\$D	\$94*C101+	\$E\$94*D10	1+\$F\$94*E	101+\$G\$94	*F101
102	2002	2.880	10.000	41.90		64.967	=\$C\$94+\$D	\$94*C102+	\$E\$94*D10	2+\$F\$94*E	102+\$G\$94	*F102
103	2002	2.880	10.500	41.90		64.930	=\$C\$94+\$D	\$94*C103+	\$E\$94*D10	3+\$F\$94*E	103+\$G\$94	*F103
104	2002	2.880	11.000	41.90		64.894	=\$C\$94+\$D	\$94*C104+	\$E\$94*D10	4+\$F\$94*E	104+\$G\$94	*F104
105	2002	2.880	11.500	41.90		64.857	=\$C\$94+\$D	\$94*C105+	\$E\$94*D10	5+\$F\$94*E	105+\$G\$94	*F105
106	2002	2.880	12.000	41.90		64.821	=\$C\$94+\$D	\$94*C106+	\$E\$94*D10	6+\$F\$94*E	106+\$G\$94	*F106

Multiple Regression Forecast with Risk

We will begin probabilistic forecast using PA_{t+i} and σ (Std. Dev) and assume a normal distribution for residuals.

$$\tilde{PA}_{t+i} = \hat{PA}_{t+i} + NORM(0, \sigma)$$

or

$$\tilde{PA}_{t+i} = \hat{PA}_{t+i} + \sigma * NORM(0,1)$$

or

$$\tilde{PA}_{t+i} = NORM(\hat{PA}_{t+i}, \sigma)$$

	Α	В	С	D	E	F	G
108	Intercept	Years	Price t-1	CRP t	Yield t-1		
109	843.985	-0.41164	9.23694	-0.07315	0.458552		
110	Assumed >	2003	2.88	9.6	41.1		
111	Forecasted	t	SE Predic	ted	Probabilis	tic	
112	Y-Hat for 2	003	SEP for 2	003	Forecast :	2003	
113	64.218		5.141		57.044	=NORM(A	113,C113)
114	Formula to	forecast	determinis	itc compoi	nent		
115	=A109+B10	09*B110+C	:109*C110-	+D109*D11	0+E109*E	110	

Multiple Regression Forecast with Risk

Present probabilistic forecast as a PDF with 95% Confidence Interval shown here as the bars about the mean for a probability density function (PDF).

PDF Approximation				
	Forecast 2			
Start	49			
End	82			
Band Widt	2.157497			
Kernel	Gaussian			
Confidenc	95.0%			
Lower Qua	54.685			
Average	64.045			
Upper Qua	72.378			

Regression Model for Growth

- Some data display a growth pattern.
- Easy to forecast with multiple regression
- Add T^2 variable to capture the growth or decay of Y variable.
- Growth function

$$Y = a + b_1 T + b_2 T^2$$

Growth at decreasing rate

$$Y = a + b_1 Log(T)$$

Data & Results for Log Models

Single Log Form

$$Log(Y_t) = b_0 + b_1 T$$

Try the Si	ngle Log F	orm	95%	Intercept	Years
KOV	Log Y	Years	Beta	184.039	-0.091
110.0	4.70048	1970	S.E.	4.393	0.002
93.0	4.532599	1971	t-test	41.895	-41.176
80.0	4.382027	1972	Prob(t)	0.000	0.000
81.0	4.394449	1973	Elasticity at M	ean	-57.184
68.0	4.219508	1974	Variance Inflat	ion Factor	NA
55.0	4.007333	1975	Partial Correla	ation	NA
52.0	3.951244	1976	Semipartial Co	orrelation	NA

Double Log Form

$$Log(Y_t) = b_0 + b_1 Log(T)$$

Double Lo	g Transfo	rmation of	the Data	95%	Intercept	Log X
Actual KO	Years	Log Y	Log X	Beta	1376.746	-180.887
110.0	1970	4.70048	7.585788822	S.E.	33.222	4.375
93.0	1971	4.532599	7.586296307	t-test	41.441	-41.346
80.0	1972	4.382027	7.586803535	Prob(t)	0.000	0.000
81.0	1973	4.394449	7.587310506	Elasticity at M	ean	-434.258

Regression Model For Decay Functions

- Some data display a decay pattern.
- There are various possible models for this situation
- One example: use an exogenous variable of the form $\frac{1}{T}$
- Decay function

$$Y = \beta_0 + \beta_1(\frac{1}{T}) + \beta_2(\frac{1}{T^2})$$

Forecasting Growth or Decay Patterns

Here is the regression result for estimating a decay function.

$$Y_t = \beta_0 + \beta_1(\frac{1}{T})$$

or

$$Y_t = \beta_0 + \beta_1 \frac{1}{T} + \beta_2 \frac{1}{T^2}$$

Multiple Regression Forecasts

Example of a structural regression model that contains both a Trend and an independent X variable

$$Y = \beta_0 + \beta_1 T + \beta_2 X_t$$

This equation does not explain all of the variability, a seasonal or cyclical variability may be present, if so, you need to "remove" its effect.

OLS Regr	ession Sta	tistics for A	cres t
F-test	43.620	Prob(F)	0.000
MSE ^{1/2}	5.099	CV Regr	7.446
R^2	0.708	Durbin-Wa	0.659
RBar ²	0.692	Rho	0.671
Akaike Inf	3.281	Goldfeld-(4.614
Schwarz I	3.366		
95%	Intercept	EPrice t-1	Trend
95% Beta	Intercept 805.020	EPrice t-1 9.758	-0.386
		9.758	
Beta	805.020	9.758	-0.386
Beta S.E.	805.020 162.842	9.758 1.045	- 0.386 0.083
Beta S.E. t-test	805.020 162.842 4.944 0.000	9.758 1.045 9.339	-0.386 0.083 -4.659
Beta S.E. t-test Prob(t) Elasticity	805.020 162.842 4.944 0.000	9.758 1.045 9.339 0.000 0.424	-0.386 0.083 -4.659 0.000

Regression evaluation

- Make sure parameter signs are based on sound economic theory for all variables.
- Student t ratios greater than 1.96 (P values for betas < 0.05).
- F ratio larger than 20.0 and its P value < 0.05.
- Add explanatory elements that increase R^2 by a non-trivial amount.

Goodness of Fit Measures

Models with high R^2 may not forecast well. Every time we add a new X, we will get some increase in R^2 .

$$R^{2} = 1 - \frac{\sum_{t=1}^{T} e_{t}^{2}}{\sum_{t=1}^{T} (Y_{t} - \bar{Y})^{2}}$$

 \bar{R}^2 is preferred as it is not affected by no. of Xs.

$$\bar{R}^2 = 1 - \frac{(1 - R^2)(n - 1)}{n - k}$$

We might also use MAPE for model selection. MAPE is used to measure the accuracy of a forecasting measure and usually the accuracy is expressed in terms of percentage.

$$\textit{MAPE} = \frac{100\%}{n} \sum_{t=1}^{T} \left| \frac{Y_t - \hat{Y}_t}{Y_t} \right|$$

Information Criteria

For a residual sum of squares RSS, a number of right-hand-side variables k, and a number of observations n, Akaike Information Criterion and Bayesian Information Criterion are calculated as follows:

Akaike Information Criterion (AIC)

$$AIC = \ln\left(\frac{RSS}{n}\right) + \frac{2(k+1)}{n}$$

 Bayesian Information Criterion (BIC), sometimes called Schwartz Information Criterion (SIC) or Schwarz Bayesian Criterion (SBC)

$$BIC = \ln\left(\frac{RSS}{n}\right) + \frac{k}{n}\ln(n)$$

 When fitting models, it is possible to increase the likelihood by adding parameters, but doing so may result in overfitting. The AIC & BIC resolve this problem by introducing a penalty term for the number of parameters in the model. The penalty term is larger in BIC than in AIC.

Summary of Goodness of Fit Measures

- MAPE works best to determine model for "in sample" forecasting.
- R^2 does not penalize for adding Xs.
- \bar{R}^2 provides some penalty as k increases.
- AIC is better than R^2 but BIC results in the most parsimonious models (fewest Xs).

Black Swans (BSs)

- Black Swans are low probability events.
 - An outlier, which is "outside realm of reasonable expectations."
 - Carries an extreme impact.
 - Human nature causes us to concoct explanations.
- Black swans are an example of uncertainty
 - Uncertainty is generated by unknown probability distributions.
 - Risk is generated by "known" distributions.
- 1917 influenza pandemic would be a black swan.
- War outbreak
- Meteor strike
- Sudden policy change
- We will discuss more about incorporating uncertainty in the model when we start simulating non-parametric distributions.