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Multiple Regression Analysis

We would like to know following about regression analysis:

How to use a regression to forecast a variable

How to interpret the beta coefficients

What the t ratio means

What the p value is and what it means

What the residuals are

What the standard deviation is

What is the F ratio and R2 and what they are used for
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Structural Variation

Variables you want to forecast are often dependent on other
variables.

Qt. Demand = f(Own Price, Substitute Price, Income,
Population, Season, Tastes & Preferences, Trend, etc.).
CropYield = a + b(Time, etc)

Structural models will explain most structural variation in a data
series.

Even when we build structural models, the forecast is not
perfect.

A residual remains as the unexplained portion.
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Multiple Regression Forecasts

Variables to include in a structural model are suggested by:

Economic theory
Knowledge of industry
Known relationships to other variables

Examples of forecasting and uses:

Planted acres – needed by ag. input businesses
Demand for a product - sales and processors
Price of corn for cattle - feedlots, grain mills, etc.
Government payments - Congressional Budget Office
Exports or trade flows - international ag. business
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Multiple Regression Forecasts

Structural model

Y = β0 + β1X + β2Z + e

where X and Z are exogenous variables that explain the
variation of Y over the historical period.

Estimate parameters (β0, β1, β2, e) using OLS.

OLS minimizes the sum of squared residuals.
That is, we seek to explain as much of the variation in Ŷ as
possible, i.e., maximizing the precision of your probabilistic
forecast.
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Example of a Structural Forecast Model for a Crop

Planted Acrest = f (Pricet−1,Planted Acrest−1, IdleAcret ,Xt)

HarvAct = f (PltAct)

Yieldt = f (Trendt)

Productiont = Yieldt ∗ HarvAct
Supplyt = Prodt + EndStockt−1

DomesticDt = f (Pricet , Income/popt ,Zt)

Exportt = f (Pricet ,Yt)

EndingStockt = f (Pricet ,Productiont)

DomesticDt + Exportt + EndingStockt = Supplyt
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Steps to build Multiple Regression Models

Plot the Y variable in search of: trend, seasonal, cyclical, structural, and
irregular variation.

Consider what relationships are suggested by economic theory and
knowledge an industry

Plot Y vs. each X to evaluate the strength of hypothesized relationships;
calculate correlation coefficients to Y .

A Crop production forecast might be specified as follows:

PltAct = f (E (Pricet),PltAct−1,E (P thCropt),Trend ,Yieldt−1)

HarvAct = β0 + β1PltAct

Yieldt = β0 + β1T

Prodt = HarvAct ∗ Yieldt
Estimate with OLS.

Make the deterministic forecast.

Add stochastic error(s) for a probabilistic forecast.
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US Planted Wheat Acreage Model

PltAct = f (E (Pricet),Yieldt−1,CRPt ,Yeart)

Statistically significant betas for the Trend (”Years”) and Price.

Leave CRP in model because its needed for policy analysis.

Consider dropping Yieldt−1
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Forecasting with Multiple Regression Models

Specify (assume) alternative values for X ’s.

Multiply Betas by their respective X ’s.

Forecast Acres for alternative Prices and CRP .

Lagged Yield and Year are constant in scenarios.
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Multiple Regression Forecast with Risk

We will begin probabilistic forecast using P̃At+i and σ (Std. Dev) and
assume a normal distribution for residuals.

P̃At+i = P̂At+i + NORM(0, σ)

or
P̃At+i = P̂At+i + σ ∗ NORM(0, 1)

or
P̃At+i = NORM(P̂At+i , σ)
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Multiple Regression Forecast with Risk

Present probabilistic forecast as a PDF with 95% Confidence Interval
shown here as the bars about the mean for a
probability density function (PDF).
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Regression Model for Growth

Some data display a growth pattern.

Easy to forecast with multiple regression

Add T 2 variable to capture the growth or decay of Y variable.

Growth function
Y = a + b1T + b2T

2

Growth at decreasing rate

Y = a + b1Log(T )
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Data & Results for Log Models

Single Log Form
Log(Yt) = b0 + b1T

Double Log Form

Log(Yt) = b0 + b1Log(T )
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Regression Model For Decay Functions

Some data display a decay pattern.

There are various possible models for this situation

One example: use an exogenous variable of the form 1
T

Decay function

Y = β0 + β1(
1

T
) + β2(

1

T 2
)
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Forecasting Growth or Decay Patterns

Here is the regression result for estimating a decay function.

Yt = β0 + β1(
1

T
)

or

Yt = β0 + β1
1

T
+ β2

1

T 2
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Multiple Regression Forecasts

Example of a structural regression model that contains both a Trend
and an independent X variable

Y = β0 + β1T + β2Xt

This equation does not explain all of the variability, a seasonal or
cyclical variability may be present, if so, you need to “remove” its
effect.
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Regression evaluation

Make sure parameter signs are based on sound economic theory
for all variables.

Student t ratios greater than 1.96 (P values for betas < 0.05).

F ratio larger than 20.0 and its P value < 0.05.

Add explanatory elements that increase R2 by a non-trivial
amount.
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Goodness of Fit Measures

Models with high R2 may not forecast well. Every time we add a new X ,
we will get some increase in R2.

R2 = 1 −
∑T

t=1 e
2
t∑T

t=1(Yt − Ȳ )2

R̄2 is preferred as it is not affected by no. of X s.

R̄2 = 1 − (1 − R2)(n − 1)

n − k

We might also use MAPE for model selection. MAPE is used to measure
the accuracy of a forecasting measure and usually the accuracy is
expressed in terms of percentage.

MAPE =
100%

n

T∑
t=1

∣∣∣∣∣Yt − Ŷt

Yt

∣∣∣∣∣
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Information Criteria

For a residual sum of squares RSS, a number of right-hand-side variables k, and a number of
observations n, Akaike Information Criterion and Bayesian Information Criterion are calculated
as follows:

Akaike Information Criterion (AIC)

AIC = ln

(
RSS

n

)
+

2(k + 1)

n

Bayesian Information Criterion (BIC), sometimes called Schwartz Information Criterion
(SIC) or Schwarz Bayesian Criterion (SBC)

BIC = ln

(
RSS

n

)
+

k

n
ln(n)

When fitting models, it is possible to increase the likelihood by adding parameters, but
doing so may result in overfitting. The AIC & BIC resolve this problem by introducing a
penalty term for the number of parameters in the model. The penalty term is larger in
BIC than in AIC.
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Summary of Goodness of Fit Measures

MAPE works best to determine model for “in sample”
forecasting.

R2 does not penalize for adding X s.

R̄2 provides some penalty as k increases.

AIC is better than R2 but BIC results in the most parsimonious
models (fewest X s).
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Black Swans (BSs)

Black Swans are low probability events.

An outlier, which is “outside realm of reasonable expectations.”
Carries an extreme impact.
Human nature causes us to concoct explanations.

Black swans are an example of uncertainty

Uncertainty is generated by unknown probability distributions.
Risk is generated by “known” distributions.

1917 influenza pandemic would be a black swan.

War outbreak

Meteor strike

Sudden policy change

We will discuss more about incorporating uncertainty in the model
when we start simulating non-parametric distributions.
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